
gThreat ModdelingThreat Moddeling

Designing foor Security

Adam SShostack

This part of the book is for those who are new to threat moddeling, and it assumes

no prior knowledge of threat modeling or security. It focuuses on the key new

skills that you’ll need to threat model and lays out a methodoology that’s designed

for people who are new to threat modeling.

Part I also introduces the various ways to approach threeat modeling using a

set of toy analogies. Much like there are many children’s toyys for modeling, there

are many ways to threat model. There are model kits with precisely molded

parts to create airplanes or ships. These kits have a high ddegree of fi delity and

a low level of fl exibility. There are also numerous buildingg block systems such

as Lincoln Logs, Erector Sets, and Lego blocks. Each of thhese allows for more

fl exibility, at the price of perhaps not having a propeller tthat’s quite right for

the plane you want to model.

In threat modeling, there are techniques that center onn attackers, assets, or

software, and these are like Lincoln Logs, Erector Sets, andd Lego blocks, in that

each is powerful and fl exible, each has advantages and ddisadvantages, and it

can be tricky to combine them into something beautiful.

Par t

I
ggGettingg StartedGettingg Started

2 Part I ■ Getting Started

Part I contains the following chapters:

■ Chapter 1: Dive In and Threat Model! contains everything you need to

get started threat modeling, and does so by focusing on four questions:

■ What are you building?

■ What can go wrong?

■ What should you do about those things that can go wrong?

■ Did you do a decent job of analysis?

These questions aren’t just what you need to get started, but are at the

heart of the four-step framework, which is the core of this book.

■ Chapter 2: Strategies for Threat Modeling covers a great many ways

to approach threat modeling. Many of them are “obvious” approaches,

such as thinking about attackers or the assets you want to protect. Each

is explained, along with why it works less well than you hope. These

and others are contrasted with a focus on software. Software is what

you can most reasonably expect a software professional to understand,

and so models of software are the most important lesson of Chapter 2.

Models of software are one of the two models that you should focus on

when threat modeling.

3

Anyone can learn to threat model, and what’s more, everyone should. Threat

modeling is about using models to fi nd security problems. Using a model means

abstracting away a lot of details to provide a look at a bigger picture, rather than

the code itself. You model because it enables you to fi nd issues in things you

haven’t built yet, and because it enables you to catch a problem before it starts.

Lastly, you threat model as a way to anticipate the threats that could affect you.

Threat modeling is fi rst and foremost a practical discipline, and this chapter

is structured to refl ect that practicality. Even though this book will provide you

with many valuable defi nitions, theories, philosophies, effective approaches,

and well-tested techniques, you’ll want those to be grounded in experience.

Therefore, this chapter avoids focusing on theory and ignores variations for

now and instead gives you a chance to learn by experience.

To use an analogy, when you start playing an instrument, you need to develop

muscles and awareness by playing the instrument. It won’t sound great at the

start, and it will be frustrating at times, but as you do it, you’ll fi nd it gets easier.

You’ll start to hit the notes and the timing. Similarly, if you use the simple four-

step breakdown of how to threat model that’s exercised in Parts I-III of this book,

you’ll start to develop your muscles. You probably know the old joke about the

person who stops a musician on the streets of New York and asks “How do I

get to Carnegie Hall?” The answer, of course, is “practice, practice, practice.”

Some of that includes following along, doing the exercises, and developing an

C H A P T E R

1

Dive In and Threaat Model!

4 Part I ■ Getting Started

understanding of the steps involved. As you do so, you’ll start to understand how

the various tasks and techniques that make up threat modeling come together.

In this chapter you’re going to fi nd security fl aws that might exist in a design,

so you can address them. You’ll learn how to do this by examining a simple

web application with a database back end. This will give you an idea of what

can go wrong, how to address it, and how to check your work. Along the way,

you’ll learn to play Elevation of Privilege, a serious game designed to help you

start threat modeling. Finally you’ll get some hands-on experience building

your own threat model, and the chapter closes with a set of checklists that help

you get started threat modeling.

Learning to Threat Model

You begin threat modeling by focusing on four key questions:

 1. What are you building?

 2. What can go wrong?

 3. What should you do about those things that can go wrong?

 4. Did you do a decent job of analysis?

In addressing these questions, you start and end with tasks that all technolo-

gists should be familiar with: drawing on a whiteboard and managing bugs. In

between, this chapter will introduce a variety of new techniques you can use to

think about threats. If you get confused, just come back to these four questions.

Everything in this chapter is designed to help you answer one of these ques-

tions. You’re going to fi rst walk through these questions using a three-tier web

app as an example, and after you’ve read that, you should walk through the

steps again with something of your own to threat model. It could be software

you’re building or deploying, or software you’re considering acquiring. If you’re

feeling uncertain about what to model, you can use one of the sample systems

in this chapter or an exercise found in Appendix E, “Case Studies.”

The second time you work through this chapter, you’ll need a copy of the

Elevation of Privilege threat-modeling game. The game uses a deck of cards

that you can download free from http://www.microsoft.com/security/sdl/

adopt/eop.aspx. You should get two–four friends or colleagues together for

the game part.

You start with building a diagram, which is the fi rst of four major activities

involved in threat modeling and is explained in the next section. The other

three include fi nding threats, addressing them, and then checking your work.

 Chapter 1 ■ Dive In and Threat Model! 5

What Are You Building?
Diagrams are a good way to communicate what you are building. There are

lots of ways to diagram software, and you can start with a whiteboard diagram

of how data fl ows through the system. In this example, you’re working with

a simple web app with a web browser, web server, some business logic and a

database (see Figure 1-1).

Web browser Web server Business Logic Database

Figure 1-1: A whiteboard diagram

Some people will actually start thinking about what goes wrong right here.

For example, how do you know that the web browser is being used by the person

you expect? What happens if someone modifi es data in the database? Is it OK

for information to move from one box to the next without being encrypted? You

might want to take a minute to think about some things that could go wrong

here because these sorts of questions may lead you to ask “is that allowed?”

You can create an even better model of what you’re building if you think about

“who controls what” a little. Is this a website for the whole Internet, or is it an

intranet site? Is the database on site, or at a web provider?

For this example, let’s say that you’re building an Internet site, and you’re

using the fi ctitious Acme storage-system. (I’d put a specifi c product here, but

then I’d get some little detail wrong and someone, certainly not you, would

get all wrapped around the axle about it and miss the threat modeling lesson.

Therefore, let’s just call it Acme, and pretend it just works the way I’m saying.

Thanks! I knew you’d understand.)

Adding boundaries to show who controls what is a simple way to improve

the diagram. You can pretty easily see that the threats that cross those bound-

aries are likely important ones, and may be a good place to start identifying

threats. These boundaries are called trust boundaries, and you should draw

6 Part I ■ Getting Started

them wherever different people control different things. Good examples of this

include the following:

■ Accounts (UIDs on unix systems, or SIDS on Windows)

■ Network interfaces

■ Different physical computers

■ Virtual machines

■ Organizational boundaries

■ Almost anywhere you can argue for different privileges

TRUST BOUNDARY VERSUS ATTACK SURFACE

A closely related concept that you may have encountered is attack surface. For example,
the hull of a ship is an attack surface for a torpedo. The side of a ship presents a larger
attack surface to a submarine than the bow of the same ship. The ship may have inter-
nal “trust” boundaries, such as waterproof bulkheads or a Captain’s safe. A system that
exposes lots of interfaces presents a larger attack surface than one that presents few
APIs or other interfaces. Network fi rewalls are useful boundaries because they reduce the
attack surface relative to an external attacker. However, much like the Captain’s safe, there
are still trust boundaries inside the fi rewall. A trust boundary and an attack surface are
very similar views of the same thing. An attack surface is a trust boundary and a direction
from which an attacker could launch an attack. Many people will treat the terms are inter-
changeable. In this book, you’ll generally see “trust boundary” used.

In your diagram, draw the trust boundaries as boxes (see Figure 1-2), show-

ing what’s inside each with a label (such as “corporate data center”) near the

edge of the box.

Web browser Web server

Corporate data center
Web storage
(offsite)

Business Logic Database

Figure 1-2: Trust boundaries added to a whiteboard diagram

 Chapter 1 ■ Dive In and Threat Model! 7

As your diagram gets larger and more complex, it becomes easy to miss

a part of it, or to become confused by labels on the data fl ows. Therefore, it

can be very helpful to number each process, data fl ow, and data store in the

diagram, as shown in Figure 1-3. (Because each trust boundary should have a

unique name, representing the unique trust inside of it, there’s limited value

to numbering those.)

Web browser Web server
1 2 3 4 5 6 7

Corporate data center
Web storage
(offsite)

Business Logic Database

Figure 1-3: Numbers and trust boundaries added to a whiteboard diagram

Regarding the physical form of the diagram: Use whatever works for you.

If that’s a whiteboard diagram and a camera phone picture, great. If it’s Visio,

or OmniGraffl e, or some other drawing program, great. You should think of

threat model diagrams as part of the development process, so try to keep it in

source control with everything else.

Now that you have a diagram, it’s natural to ask, is it the right diagram? For

now, there’s a simple answer: Let’s assume it is. Later in this chapter there are

some tips and checklists as well as a section on updating the diagram, but at

this stage you have a good enough diagram to get started on identifying threats,

which is really why you bought this book. So let’s identify.

What Can Go Wrong?
Now that you have a diagram, you can really start looking for what can go wrong

with its security. This is so much fun that I turned it into a game called, Elevation
of Privilege. There’s more on the game in Appendix D, “Elevation of Privilege:

The Cards,” which discusses each card, and in Chapter 11, “Threat Modeling

Tools,” which covers the history and philosophy of the game, but you can get

started playing now with a few simple instructions. If you haven’t already done

so, download a deck of cards from http://www.microsoft.com/security/sdl/

adopt/eop.aspx. Print the pages in color, and cut them into individual cards.

Then shuffl e the deck and deal it out to those friends you’ve invited to play.

8 Part I ■ Getting Started

N O T E Some people aren’t used to playing games at work. Others approach new
games with trepidation, especially when those games involve long, complicated instruc-
tions. Elevation of Privilege takes just a few lines to explain. You should give it a try.

How To Play Elevation of Privilege

Elevation of Privilege is a serious game designed to help you threat model. A

sample card is shown in Figure 1-4. You’ll notice that like playing cards, it has a

number and suit in the upper left, and an example of a threat as the main text on

the card. To play the game, simply follow the instructions in the upcoming list.

TamperingTT
An attacker can take
advantage of your custom key
exchange or integrity control
which you built instead of
using standard crypto.

Figure 1-4: An Elevation of Privilege card

 1. Deal the deck. (Shuffl ing is optional.)

 2. The person with the 3 of Tampering leads the fi rst round. (In card games

like this, rounds are also called “tricks” or “hands.”)

 Chapter 1 ■ Dive In and Threat Model! 9

 3. Each round works like so:

 A. Each player plays one card, starting with the person leading the round,

and then moving clockwise.

 B. To play a card, read it aloud, and try to determine if it affects the

system you have diagrammed. If you can link it, write it down, and

score yourself a point. Play continues clockwise with the next player.

 C. When each player has played a card, the player who has played the

highest card wins the round. That player leads the next round.

 4. When all the cards have been played, the game ends and the person with

the most points wins.

 5. If you’re threat modeling a system you’re building, then you go fi le any

bugs you fi nd.

There are some folks who threat model like this in their sleep, or even have

trouble switching it off. Not everyone is like that. That’s OK. Threat modeling

is not rocket science. It’s stuff that anyone who participates in software devel-

opment can learn. Not everyone wants to dedicate the time to learn to do it in

their sleep.

Identifying threats can seem intimidating to a lot of people. If you’re one of

them, don’t worry. This section is designed to gently walk you through threat

identifi cation. Remember to have fun as you do this. As one reviewer said:

“Playing Elevation of Privilege should be fun. Don’t downplay that. We play it

every Friday. It’s enjoyable, relaxing, and still has business value.”

Outside of the context of the game, you can take the next step in threat model-

ing by thinking of things that might go wrong. For instance, how do you know

that the web browser is being used by the person you expect? What happens

if someone modifi es data in the database? Is it OK for information to move

from one box to the next without being encrypted? You don’t need to come up

with these questions by just staring at the diagram and scratching your chin. (I

didn’t!) You can identify threats like these using the simple mnemonic STRIDE,

described in detail in the next section.

Using the STRIDE Mnemonic to Find Threats

STRIDE is a mnemonic for things that go wrong in security. It stands for Spoofi ng,

Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation

of Privilege:

■ Spoofi ng is pretending to be something or someone you’re not.

10 Part I 0 ■ Getting Started

■ Tampering is modifying something you’re not supposed to modify. It can

include packets on the wire (or wireless), bits on disk, or the bits in memory.

■ Repudiation means claiming you didn’t do something (regardless of

whether you did or not).

■ Information Disclosure is about exposing information to people who are

not authorized to see it.

■ Denial of Service are attacks designed to prevent a system from provid-

ing service, including by crashing it, making it unusably slow, or fi lling

all its storage.

■ Elevation of Privilege is when a program or user is technically able to

do things that they’re not supposed to do.

N O T E This is where Elevation of Privilege, the game, gets its name. This book uses
Elevation of Privilege, italicized, or abbreviated to EoP, for the game—to avoid confusion
with the threat.

Recall the three example threats mentioned in the preceding section:

■ How do you know that the web browser is being used by the person you

expect?

■ What happens if someone modifi es data in the database?

■ Is it ok for information to go from one box to the next without being encrypted?

These are examples of spoofi ng, tampering, and information disclosure. Using

STRIDE as a mnemonic can help you walk through a diagram and select example

threats. Pair that with a little knowledge of security and the right techniques,

and you’ll fi nd the important threats faster and more reliably. If you have a

process in place for ensuring that you develop a threat model, document it, and

you can increase confi dence in your software.

Now that you have STRIDE in your tool belt, walk through your diagram

again and look for more threats, this time using the mnemonic. Make a list as

you go with the threat and what element of the diagram it affects. (Generally,

the software, data fl ow, or storage is affected, rather than the trust boundary.)

The following list provides some examples of each threat.

■ Spoofi ng: Someone might pretend to be another customer, so you’ll need a

way to authenticate users. Someone might also pretend to be your website, so

you should ensure that you have an SSL certifi cate and that you use a single

domain for all your pages (to help that subset of customers who read URLs

to see if they’re in the right place). Someone might also place a deep link to

one of your pages, such as logout.html or placeorder.aspx. You should be

checking the Referrer fi eld before taking action. That’s not a complete solution

to what are called CSRF (Cross Site Request Forgery) attacks, but it’s a start.

 Chapter 1 ■ Dive In and Threat Model! 11

■ Tampering: Someone might tamper with the data in your back end at

Acme. Someone might tamper with the data as it fl ows back and forth

between their data center and yours. A programmer might replace the

operational code on the web front end without testing it, thinking they’re

uploading it to staging. An angry programmer might add a coupon code

“PayBobMore” that offers a 20 percent discount on all goods sold.

■ Repudiation: Any of the preceding actions might require digging into

what happened. Are there system logs? Is the right information being

logged effectively? Are the logs protected against tampering?

■ Information Disclosure: What happens if Acme reads your database?

Can anyone connect to the database and read or write information?

■ Denial of Service: What happens if a thousand customers show up at

once at the website? What if Acme goes down?

■ Elevation of Privilege: Perhaps the web front end is the only place

customers should access, but what enforces that? What prevents them

from connecting directly to the business logic server, or uploading new

code? If there’s a fi rewall in place, is it correctly confi gured? What controls

access to your database at Acme, or what happens if an employee at Acme

makes a mistake, or even wants to edit your fi les?

The preceding possibilities aren’t intended to be a complete list of how each

threat might manifest against every model. You can fi nd a more complete list

in Chapter 3, “STRIDE.” This shorter version will get you started though, and

it is focused on what you might need to investigate based on the very simple

diagram shown in Figure 1-2. Remember the musical instrument analogy. If

you try to start playing the piano with Ravel’s Gaspard (regarded as one of the

most complex piano pieces ever written), you’re going to be frustrated.

Tips for Identifying Threats

Whether you are identifying threats using Elevation of Privilege, STRIDE, or both, e
here are a few tips to keep in mind that can help you stay on the right track to

determine what could go wrong:

■ Start with external entities: If you’re not sure where to start, start with

the external entities or events which drive activity. There are many other

valid approaches though: You might start with the web browser, look-

ing for spoofi ng, then tampering, and so on. You could also start with

the business logic if perhaps your lead developer for that component is

in the room. Wherever you choose to begin, you want to aspire to some

level of organization. You could also go in “STRIDE order” through the

diagram. Without some organization, it’s hard to tell when you’re done,

but be careful not to add so much structure that you stifl e creativity.

12 Part I ■ Getting Started

■ Never ignore a threat because it’s not what you’re looking for right now.

You might come up with some threats while looking at other categories.

Write them down and come back to them. For example, you might have

thought about “can anyone connect to our database,” which is listed under

information disclosure, while you were looking for spoofi ng threats. If so,

that’s awesome! Good job! Redundancy in what you fi nd can be tedious,

but it helps you avoid missing things. If you fi nd yourself asking whether

“someone not authorized to connect to the database who reads informa-

tion” constitutes spoofi ng or information disclosure, the answer is, who

cares? Record the issue and move along to the next one. STRIDE is a tool

to guide you to threats, not to ask you to categorize what you’ve found;

it makes a lousy taxonomy, anyway. (That is to say, there are plenty of

security issues for which you can make an argument for various different

categorizations. Compare and contrast it with a good taxonomy, such

as the taxonomy of life. Does it have a backbone? If so, it’s a vertebrate.)

■ Focus on feasible threats: Along the way, you might come up with threats

like “someone might insert a back door at the chip factory,” or “someone

might hire our janitorial staff to plug in a hardware key logger and steal

all our passwords.” These are real possibilities but not very likely com-

pared to using an exploit to attack a vulnerability for which you haven’t

applied the patch, or tricking someone into installing software. There’s

also the question of what you can do about either, which brings us to the

next section.

Addressing Each Threat
You should now have a decent-sized list or lists of threats. The next step in the

threat modeling process is to go through the lists and address each threat. There

are four types of action you can take against each threat: Mitigate it, eliminate

it, transfer it, or accept it. The following list looks briefl y at each of these ways

to address threats, and then in the subsequent sections you will learn how to

address each specifi c threat identifi ed with the STRIDE list in the “What Can

Go Wrong” section. For more details about each of the strategies and techniques

to address these threats, see Chapters 8 and 9, “Defensive Building Blocks” and

“Tradeoffs When Addressing Threats.”

■ Mitigating threats is about doing things to make it harder to take advan-

tage of a threat. Requiring passwords to control who can log in mitigates

the threat of spoofi ng. Adding password controls that enforce complex-

ity or expiration makes it less likely that a password will be guessed or

usable if stolen.

■ Eliminating threats is almost always achieved by eliminating features. If

you have a threat that someone will access the administrative function of

 Chapter 1 ■ Dive In and Threat Model! 13

a website by visiting the /admin/URL, you can mitigate it with passwords

or other authentication techniques, but the threat is still present. You can

make it less likely to be found by using a URL like /j8e8vg21euwq/, but

the threat is still present. You can eliminate it by removing the interface,

handling administration through the command line. (There are still threats

associated with how people log in on a command line. Moving away from

HTTP makes the threat easier to mitigate by controlling the attack surface.

Both threats would be found in a complete threat model.) Incidentally,

there are other ways to eliminate threats if you’re a mob boss or you run

a police state, but I don’t advocate their use.

■ Transferring threats is about letting someone or something else handle the

risk. For example, you could pass authentication threats to the operating

system, or trust boundary enforcement to a fi rewall product. You can also

transfer risk to customers, for example, by asking them to click through

lots of hard-to-understand dialogs before they can do the work they

need to do. That’s obviously not a great solution, but sometimes people

have knowledge that they can contribute to making a security tradeoff.

For example, they might know that they just connected to a coffee shop

wireless network. If you believe the person has essential knowledge to

contribute, you should work to help her bring it to the decision. There’s

more on doing that in Chapter 15, “Human Factors and Usability.”

■ Accepting the risk is the fi nal approach to addressing threats. For most

organizations most of the time, searching everyone on the way in and out

of the building is not worth the expense or the cost to the dignity and

job satisfaction of those workers. (However, diamond mines and some-

times government agencies take a different approach.) Similarly, the cost

of preventing someone from inserting a back door in the motherboard

is expensive, so for each of these examples you might choose to accept

the risk. And once you’ve accepted the risk, you shouldn’t worry over it.

Sometimes worry is a sign that the risk hasn’t been fully accepted, or that

the risk acceptance was inappropriate.

The strategies listed in the following tables are intended to serve as examples

to illustrate ways to address threats. Your “go-to” approach should be to miti-

gate threats. Mitigation is generally the easiest and the best for your customers.

(It might look like accepting risk is easier, but over time, mitigation is easier.)

Mitigating threats can be hard work, and you shouldn’t take these examples

as complete. There are often other valid ways to address each of these threats,

and sometimes trade-offs must be made in the way the threats are addressed.

Addressing Spoofi ng

Table 1-1 and the list that follows show targets of spoofi ng, mitigation strategies

that address spoofi ng, and techniques to implement those mitigations.

14 Part I 4 ■ Getting Started

Table 1-1: Addressing Spoofi ng Threats

THREAT
TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE

Spoofi ng a
person

Identifi cation and authen-
tication (usernames and
something you know/have/
are)

Usernames, real names, or other identifi ers:

❖ Passwords

❖ Tokens

❖ Biometrics

Enrollment/maintenance/expiry

Spoofi ng a “fi le”
on disk

Leverage the OS ❖ Full paths

❖ Checking ACLs

❖ Ensuring that pipes are created properly

Cryptographic
authenticators

Digital signatures or authenticators

Spoofi ng a net-
work address

Cryptographic ❖ DNSSEC

❖ HTTPS/SSL

❖ IPsec

Spoofi ng a
program in
memory

Leverage the OS Many modern operating systems have
some form of application identifi er that the
OS will enforce.

■ When you’re concerned about a person being spoofed, ensure that each

person has a unique username and some way of authenticating. The tradi-

tional way to do this is with passwords, which have all sorts of problems

as well as all sorts of advantages that are hard to replicate. See Chapter

14, “Accounts and Identity” for more on passwords.

■ When accessing a fi le on disk, don’t ask for the fi le with open(file). Use

open(/path/to/file). If the fi le is sensitive, after opening, check vari-

ous security elements of the fi le descriptor (such as fully resolved name,

permissions, and owner). You want to check with the fi le descriptor to

avoid race conditions. This applies doubly when the fi le is an executable,

although checking after opening can be tricky. Therefore, it may help to

ensure that the permissions on the executable can’t be changed by an

attacker. In any case, you almost never want to call exec() with ./file.

■ When you’re concerned about a system or computer being spoofed when

it connects over a network, you’ll want to use DNSSEC, SSL, IPsec, or a

combination of those to ensure you’re connecting to the right place.

 Chapter 1 ■ Dive In and Threat Model! 15

Addressing Tampering

Table 1-2 and the list that follows show targets of tampering, mitigation strate-

gies that address tampering, and techniques to implement those mitigations.

Table 1-2: Addressing Tampering Threats

THREAT TARGET
MITIGATION
STRATEGY MITIGATION TECHNIQUE

Tampering with a fi le Operating system ACLs

Cryptographic ❖ Digital Signatures

❖ Keyed MAC

Racing to create a fi le
(tampering with the fi le
system)

Using a directory that’s
protected from arbitrary
user tampering

ACLs

Using private directory structures

(Randomizing your fi le names just
makes it annoying to execute the
attack.)

Tampering with a net-
work packet

Cryptographic ❖ HTTPS/SSL

❖ IPsec

Anti-pattern Network isolation (See note on
network isolation anti-pattern.)

■ Tampering with a fi le: Tampering with fi les can be easy if the attacker

has an account on the same machine, or by tampering with the network

when the fi les are obtained from a server.

■ Tampering with memory: The threats you want to worry about are those

that can occur when a process with less privileges than you, or that you

don’t trust, can alter memory. For example, if you’re getting data from a

shared memory segment, is it ACLed so only the other process can see it?

For a web app that has data coming in via AJAX, make sure you validate

that the data is what you expect after you pull in the right amount.

■ Tampering with network data: Preventing tampering with network data

requires dealing with both spoofi ng and tampering. Otherwise, someone

who wants to tamper can simply pretend to be the other end, using what’s

called a man-in-the-middle attack. The most common solution to these

problems is SSL, with IP Security (IPsec) emerging as another possibility.

SSL and IPsec both address confi dentiality and tampering, and can help

address spoofi ng.

16 Part I 6 ■ Getting Started

■ Tampering with networks anti-pattern: It’s somewhat common for peo-

ple to hope that they can isolate their network, and so not worry about

tampering threats. It’s also very hard to maintain isolation over time.

Isolation doesn’t work as well as you would hope. For example, the isolated

United States SIPRNet was thoroughly infested with malware, and the

operation to clean it up took 14 months (Shachtman, 2010).

N O T E A program can’t check whether it’s authentic after it loads. It may be
possible for something to rely on “trusted bootloaders” to provide a chain of signatures,
but the security decisions are being made external to that code. (If you’re not familiar
with the technology, don’t worry, the key lesson is that a program cannot check its own
authenticity.)

Addressing Repudiation

Addressing repudiation is generally a matter of ensuring that your system

is designed to log and ensuring that those logs are preserved and protected.

Some of that can be handled with simple steps such as using a reliable trans-

port for logs. In this sense, syslog over UDP was almost always silly from

a security perspective; syslog over TCP/SSL is now available and is vastly

better.

Table 1-3 and the list that follows show targets of repudiation, mitigation strate-

gies that address repudiation, and techniques to implement those mitigations.

Table 1-3: Addressing Repudiation Threats

THREAT TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE

No logs means you can’t
prove anything.

Log Be sure to log all the security-
relevant information.

Logs come under attack Protect your logs. ❖ Send over the network.

❖ ACL

Logs as a channel for attack Tightly specifi ed logs Documenting log design
early in the development
process

■ No logs means you can’t prove anything: This is self-explanatory. For

example, when a customer calls to complain that they never got their order,

how will this be resolved? Maintain logs so that you can investigate what

happens when someone attempts to repudiate something.

 Chapter 1 ■ Dive In and Threat Model! 17

■ Logs come under attack: Attackers will do things to prevent your logs

from being useful, including fi lling up the log to make it hard to fi nd the

attack or forcing logs to “roll over.” They may also do things to set off

so many alarms that the real attack is lost in a sea of troubles. Perhaps

obviously, sending logs over a network exposes them to other threats

that you’ll need to handle.

■ Logs as a channel for attack: By design, you’re collecting data from sources

outside your control, and delivering that data to people and systems with

security privileges. An example of such an attack might be sending mail

addressed to "</html> haha@example.com", causing trouble for web-based

tools that don’t expect inline HTML.

You can make it easier to write secure code to process your logs by clearly

communicating what your logs can’t contain, such as “Our logs are all plaintext,

and attackers can insert all sorts of things,” or “Fields 1–5 of our logs are tightly

controlled by our software, fi elds 6–9 are easy to inject data into. Field 1 is time

in GMT. Fields 2 and 3 are IP addresses (v4 or 6)...” Unless you have incredibly

strict control, documenting what your logs can contain will likely miss things.

(For example, can your logs contain Unicode double-wide characters?)

Addressing Information Disclosure

Table 1-4 and the list which follows show targets of information disclosure,

mitigation strategies that address information disclosure, and techniques to

implement those mitigations.

Table 1-4: Addressing Information Disclosure Threats

THREAT TARGET MITIGATION STRATEGY MITIGATION TECHNIQUE

Network monitoring Encryption ❖ HTTPS/SSL

❖ IPsec

Directory or fi lename (for
example
layoff-letters/
adamshostack.docx)

Leverage the OS. ACLs

File contents Leverage the OS. ACLS

Cryptography File encryption such as PGP, disk
encryption (FileVault, BitLocker)

API information
disclosure

Design Careful design control

Consider pass by reference or
value.

18 Part I 8 ■ Getting Started

■ Network monitoring: Network monitoring takes advantage of the archi-

tecture of most networks to monitor traffi c. (In particular, most networks

now broadcast packets, and each listener is expected to decide if the packet

matters to them.) When networks are architected differently, there are a

variety of techniques to draw traffi c to or through the monitoring station.

If you don’t address spoofi ng, much like tampering, an attacker can just

sit in the middle and spoof each end. Mitigating network information

disclosure threats requires handling both spoofi ng and tampering threats.

If you don’t address tampering, then there are all sorts of clever ways to

get information out. Here again, SSL and IP Security options are your

simplest choices.

■ Names reveal information: When the name of a directory or a fi lename

itself will reveal information, then the best way to protect it is to create

a parent directory with an innocuous name and use operating system

ACLs or permissions.

■ File content is sensitive: When the contents of the fi le need protection,

use ACLs or cryptography. If you want to protect all the data should the

machine fall into unauthorized hands, you’ll need to use cryptography.

The forms of cryptography that require the person to manually enter a key

or passphrase are more secure and less convenient. There’s fi le, fi lesystem,

and database cryptography, depending on what you need to protect.

■ APIs reveal information: When designing an API, or otherwise passing

information over a trust boundary, select carefully what information you

disclose. You should assume that the information you provide will be

passed on to others, so be selective about what you provide. For example,

website errors that reveal the username and password to a database are a

common form of this fl aw, others are discussed in Chapter 3.

Addressing Denial of Service

Table 1-5 and the list that follows show targets of denial of service, mitigation

strategies that address denial of service, and techniques to implement those

mitigations.

 Chapter 1 ■ Dive In and Threat Model! 19

Table 1-5: Addressing Denial of Service Threats

THREAT
TARGET

MITIGATION
STRATEGY MITIGATION TECHNIQUE

Network
fl ooding

Look for exhaustible
resources.

❖ Elastic resources

❖ Work to ensure attacker resource consumption is
as high as or higher than yours.

Network ACLS

Program
resources

Careful design Elastic resource management, proof of work

Avoid multipliers. Look for places where attackers can multiply CPU
consumption on your end with minimal eff ort on
their end: Do something to require work or enable
distinguishing attackers, such as client does crypto
fi rst or login before large work factors (of course, that
can’t mean that logins are unencrypted).

System
resources

Leverage the OS. Use OS settings.

■ Network flooding: If you have static structures for the number of

connections, what happens if those fi ll up? Similarly, to the extent that it’s

under your control, don’t accept a small amount of network data from

a possibly spoofed address and return a lot of data. Lastly, fi rewalls can

provide a layer of network ACLs to control where you’ll accept (or send)

traffi c, and can be useful in mitigating network denial-of-service attacks.

■ Look for exhaustible resources: The fi rst set of exhaustible resources are

network related, the second set are those your code manages, and the third

are those the OS manages. In each case, elastic resourcing is a valuable

technique. For example, in the 1990s some TCP stacks had a hardcoded

limit of fi ve half-open TCP connections. (A half-open connection is one

in the process of being opened. Don’t worry if that doesn’t make sense,

but rather ask yourself why the code would be limited to fi ve of them.)

Today, you can often obtain elastic resourcing of various types from

cloud providers.

20 Part I 0 ■ Getting Started

■ System resources: Operating systems tend to have limits or quotas to

control the resource consumption of user-level code. Consider those

resources that the operating system manages, such as memory or disk

usage. If your code runs on dedicated servers, it may be sensible to allow

it to chew up the entire machine. Be careful if you unlimit your code, and

be sure to document what you’re doing.

■ Program resources: Consider resources that your program manages

itself. Also, consider whether the attacker can make you do more

work than they’re doing. For example, if he sends you a packet full

of random data and you do expensive cryptographic operations on it,

then your vulnerability to denial of service will be higher than if you

make him do the cryptography fi rst. Of course, in an age of botnets,

there are limits to how well one can reassign this work. There’s an

excellent paper by Ben Laurie and Richard Clayton, “Proof of work

proves not to work,” which argues against proof of work schemes

(Laurie, 2004).

Addressing Elevation of Privilege

Table 1-6 and the list that follows show targets of elevation of privilege, mitiga-

tion strategies that address elevation of privilege, and techniques to implement

those mitigations.

Table 1-6: Addressing Elevation of Privilege Threats

THREAT TARGET
MITIGATION
STRATEGY MITIGATION TECHNIQUE

Data/code
confusion

Use tools and
architectures that
separate data and
code.

❖ Prepared statements or stored procedures in
SQL

❖ Clear separators with canonical forms

❖ Late validation that data is what the next func-
tion expects

Control fl ow/
memory corrup-
tion attacks

Use a type-safe
language.

Writing code in a type-safe language protects
against entire classes of attack.

Leverage the
OS for memory
protection.

Most modern operating systems have memory-
protection facilities.

 Chapter 1 ■ Dive In and Threat Model! 21

THREAT TARGET
MITIGATION
STRATEGY MITIGATION TECHNIQUE

Use the sandbox. ❖ Modern operating systems support sand-
boxing in various ways (AppArmor on Linux,
AppContainer or the MOICE pattern on
Windows, Sandboxlib on Mac OS).

❖ Don’t run as the “nobody” account, create a
new one for each app. Postfi x and QMail are
examples of the good pattern of one account
per function.

Command injec-
tion attacks

Be careful. ❖ Validate that your input is the size and form
you expect.

❖ Don’t sanitize. Log and then throw it away if
it’s weird.

■ Data/code confusion: Problems where data is treated as code are common.

As information crosses layers, what’s tainted and what’s pure can be lost.

Attacks such as XSS take advantage of HTML’s freely interweaving code

and data. (That is, an .html fi le contains both code, such as Javascript, and

data, such as text, to be displayed and sometimes formatting instructions

for that text.) There are a few strategies for dealing with this. The fi rst

is to look for ways in which frameworks help you keep code and data

separate. For example, prepared statements in SQL tell the database what

statements to expect, and where the data will be.

You can also look at the data you’re passing right before you pass it, so

you know what validation you might be expected to perform for the func-

tion you’re calling. For example, if you’re sending data to a web page,

you might ensure that it contains no <, >, #, or & characters, or whatever.

In fact, the value of “whatever” is highly dependent on exactly what exists

between “you” and the rendition of the web page, and what security

checks it may be performing. If “you” means a web server, it may be very

important to have a few < and > symbols in what you produce. If “you”

is something taking data from a database and sending it to, say PHP, then

the story is quite different. Ideally, the nature of “you” and the additional

steps are clear in your diagrams.

■ Control fl ow/memory corruption attacks: This set of attacks generally

takes advantage of weak typing and static structures in C-like languages

to enable an attacker to provide code and then jump to that code. If you

22 Part I ■ Getting Started

use a type-safe language, such as Java or C#, many of these attacks are

harder to execute.

Modern operating systems tend to contain memory protection and random-

ization features, such as Address Space Layout Randomization (ASLR).

Sometimes the features are optional, and require a compiler or linker switch.

In many cases, such features are almost free to use, and you should at

least try all such features your OS supports. (It’s not completely effortless,

you may need to recompile, test, or make other such small investments.)

The last set of controls to address memory corruption are sandboxes.

Sandboxes are OS features that are designed to protect the OS or the rest

of the programs running as the user from a corrupted program.

N O T E Details about each of these features are outside the scope of this book, but
searching on terms such as type safety, ASLR, and sandbox should provide a plethora of
details.

■ Command injection attacks: Command injection attacks are a form of

code/data confusion where an attacker supplies a control character, fol-

lowed by commands. For example, in SQL injection, a single quote will

often close a dynamic SQL statement; and when dealing with unix shell

scripts, the shell can interpret a semicolon as the end of input, taking

anything after that as a command.

In addition to working through each STRIDE threat you encounter, a few other

recurring themes will come up as you address your threats; these are covered

in the following two sections.

Validate, Don’t Sanitize

Know what you expect to see, how much you expect to see, and validate that

that’s what you’re receiving. If you get something else, throw it away and return

an error message. Unless your code is perfect, errors in sanitization will hurt

a lot, because after you write that sanitize input function you’re going to rely

on it. There have been fascinating attacks that rely on a sanitize function to get

their code into shape to execute.

Trust the Operating System

One of the themes that recurs in the preceding tables is “trust the operating

system.” Of course, you may want to discount that because I did much of this

 Chapter 1 ■ Dive In and Threat Model! 23

work while working for Microsoft, a purveyor of a variety of fi ne operating

system software, so there might be some bias here. It’s a valid point, and good

for you for being skeptical. See, you’re threat modeling already!

More seriously, trusting the operating system is a good idea for a number

of reasons:

■ The operating system provides you with security features so you can

focus on your unique value proposition.

■ The operating system runs with privileges that are probably not available

to your program or your attacker.

■ If your attacker controls the operating system, you’re likely in a world of

hurt regardless of what your code tries to do.

With all of that “trust the operating system” advice, you might be tempted to

ask why you need this book. Why not just rely on the operating system?

Well, many of the building blocks just discussed are discretionary. You can

use them well or you can use them poorly. It’s up to you to ensure that you don’t

set the permissions on a fi le to 777, or the ACLs to allow Guest accounts to write.

It’s up to you to write code that runs well as a normal or even sandboxed user,

and it’s certainly up to you in these early days of client/server, web, distributed

systems, web 2.0, cloud, or whatever comes next to ensure that you’re building

the right security mechanisms that these newfangled widgets don’t yet offer.

File Bugs

Now that you have a list of threats and ways you would like to mitigate them,

you’re through the complex, security-centered parts of the process. There are just

a few more things to do, the fi rst of which is to treat each line of the preceding

tables as a bug. You want to treat these as bugs because if you ship software,

you’ve learned to handle bugs in some way. You presumably have a way to track

them, prioritize them, and ensure that you’re closing them with an appropriate

degree of consistency. This will mean something very different to a three-person

start-up versus a medical device manufacturer, but both organizations will have

a way to handle bugs. You want to tap into that procedure to ensure that threat

modeling isn’t just a paper exercise.

You can write the text of the bugs in a variety of ways, based on what your

organization does. Examples of fi ling a bug might include the following:

■ Someone might use the /admin/ interface without proper authorization.

■ The admin interface lacks proper authorization controls,

■ There’s no automated security testing for the /admin/ interface.

24 Part I4 ■ Getting Started

Whichever way you go, it’s great if you can include the entire threat in the

bug, and mark it as a security bug if your bug-tracking tool supports that. (If

you’re a super-agile scrum shop, use a uniquely colored Post-it for security bugs.)

You’ll also have to prioritize the bugs. Elevation-of-privilege bugs are almost

always going to fall into the highest priority category, because when they’re

exploited they lead to so much damage. Denial of service often falls toward

the bottom of the stack, but you’ll have to consider each bug to determine how

to rank it.

Checking Your Work
Validation of your threat model is the last thing you do as part of threat model-

ing. There are a few tasks to be done here, and it is best to keep them aligned

with the order in which you did the previous work. Therefore, the validation

tasks include checking the model, checking that you’ve looked for each threat,

and checking your tests. You probably also want to validate the model a second

time as you get close to shipping or deploying.

Checking the model

You should ensure that the fi nal model matched what you built. If it doesn’t,

how can you know that you found the right, relevant threats? To do so, try to

arrange a meeting during which everyone looks at the diagram, and answer

the following questions:

■ Is this complete?

■ Is it accurate?

■ Does it cover all the security decisions we made?

■ Can I start the next version with this diagram without any changes?

If everyone says yes, your diagram is suffi ciently up to date for the next step.

If not, you’ll need to update it.

Updating the Diagram

As you went through the diagram, you might have noticed that it’s missing

key data. If it were a real system, there might be extra interfaces that were not

drawn in, or there might be additional databases. There might be details that you

jumped to the whiteboard to draw in. If so, you need to update the diagram with

those details. A few rules of thumb are useful as you create or update diagrams:

■ Focus on data fl ow, not control fl ow.

■ Anytime you need to qualify your answer with “sometimes” or “also,”

you should consider adding more detail to break out the various cases. For

example, if you say, “Sometimes we connect to this web service via SSL,

 Chapter 1 ■ Dive In and Threat Model! 25

and sometimes we fall back to HTTP,” you should draw both of those data

fl ows (and consider whether an attacker can make you fall back like that).

■ Anytime you fi nd yourself needing more detail to explain security-relevant

behavior, draw it in.

■ Any place you argued over the design or construction of the system, draw

in the agreed-on facts. This is an important way to ensure that everyone

ended that discussion on the same page. It’s especially important for larger

teams when not everyone is in the room for the threat model discussions.

If they see a diagram that contradicts their thinking, they can either accept

it or challenge the assumptions; but either way, a good clear diagram can

help get everyone on the same page.

■ Don’t have data sinks: You write the data for a reason. Show who uses it.

■ Data can’t move itself from one data store to another: Show the process

that moves it.

■ The diagram should tell a story, and support you telling stories while

pointing at it.

■ Don’t draw an eye chart (a diagram with so much detail that you need to

squint to read the tiny print).

Diagram Details

If you’re wondering how to reconcile that last rule of thumb, don’t draw an eye

chart, with all the details that a real software project can entail, one technique

is to use a sub diagram that shows the details of one particular area. You should

look for ways to break things out that make sense for your project. For example,

if you have one hyper-complex process, maybe everything in that process should

be covered in one diagram, and everything outside it in another. If you have

a dispatcher or queuing system, that’s a good place to break things up. Your

databases or the fail-over system is also a good split. Maybe there’s a set of a

few elements that really need more detail. All of these are good ways to break

things out.

The key thing to remember is that the diagram is intended to help ensure

that you understand and can discuss the system. Recall the quote that opens

this book: “All models are wrong. Some models are useful.” Therefore, when

you’re adding additional diagrams, don’t ask, “Is this the right way to do it?”

Instead, ask, “Does this help me think about what might go wrong?”

Checking Each Threat

There are two main types of validation activities you should do. The fi rst is

checking that you did the right thing with each threat you found. The other is

asking if you found all the threats you should fi nd.

26 Part I 6 ■ Getting Started

In terms of checking that you did the right thing with each threat you did

fi nd, the fi rst and foremost question here is “Did I do something with each

unique threat I found?” You really don’t want to drop stuff on the fl oor. This is

“turning the crank” sort of work. It’s rarely glamorous or exciting until you fi nd

the thing you overlooked. You can save a lot of time by taking meeting minutes

and writing a bug number next to each one, checking that you’ve addressed

each when you do your bug triage.

The next question is “Did I do the right something with each threat?” If you’ve

fi led bugs with some sort of security tag, run a query for all the security bugs,

and give each one a going-over. This can be as lightweight as reading each

bug and asking yourself, “Did I do the right thing?” or you could use a short

checklist, an example of which (“Validating threats”) is included at the end of

this chapter in the “Checklists for Diving in and Threat Modeling” section.

Checking Your Tests

For each threat that you address, ensure you’ve built a good test to detect the

problem. Your test can be a manual testing process or an automated test. Some

of these tests will be easy, and others very tricky. For example, if you want to

ensure that no static web page under /beta can be accessed without the beta

cookie, you can build a quick script that retrieves all the pages from your source

repository, constructs a URL for it, and tries to collect the page. You could extend

the script to send a cookie with each request, and then re-request with an admin

cookie. Ideally, that’s easy to do in your existing web testing framework. It

gets a little more complex with dynamic pages, and a lot more complex when

the security risk is something such as SQL injection or secure parsing of user

input. There are entire books written on those subjects, not to mention entire

books on the subject of testing. The key question you should ask is something

like “Are my security tests in line with the other software tests and the sorts of

risks that failures expose?”

Threat Modeling on Your Own

You have now walked through your fi rst threat model. Congratulations! Remember

though: You’re not going to get to Carnegie Hall if you don’t practice, practice,

practice. That means it is time to do it again, this time on your own, because

doing it again is the only way to get better. Pick a system you’re working on and

threat model it. Follow this simplifi ed, fi ve-step process as you go:

 1. Draw a diagram.

 2. Use the EoP game to fi nd threats.

 Chapter 1 ■ Dive In and Threat Model! 27

 3. Address each threat in some way.

 4. Check your work with the checklists at the end of this chapter.

 5. Celebrate and share your work.

Right now, if you’re new to threat modeling, your best bet is to do it often,

applying it to the software and systems that matters to you. After threat model-

ing a few systems, you’ll fi nd yourself getting more comfortable with the tools

and techniques. For now, the thing to do is practice. Build your fi rst muscles to

threat model with.

This brings up the question, what should you threat model next?

What you’re working on now is the fi rst place to look for the next system to

threat model. If it has a trust boundary of some sort, it may be a good candidate.

If it’s too simple to have trust boundaries, threat modeling it probably won’t

be very satisfying. If it has too many boundaries, it may be too big a project to

chew on all at once. If you’re collaborating closely on it with a few other people

who you trust, that may be a good opportunity to play EoP with them. If you’re

working on a large team, or across organizational boundaries, or things are tense,

then those people may not be good fi rst collaborators on threat modeling. Start

with what you’re working on now, unless there are tangible reasons to wait.

Checklists for Diving In and Threat Modeling

There’s a lot in this chapter. As you sit down to really do the work yourself, it can

be tricky to assess how you’re doing. Here are some checklists that are designed

to help you avoid the most common problems. Each question is designed to be

read aloud and to have an affi rmative answer from everyone present. After read-

ing each question out loud, encourage questions or clarifi cation from everyone

else involved.

Diagramming

 1. Can we tell a story without changing the diagram?

 2. Can we tell that story without using words such as “sometimes” or “also”?

 3. Can we look at the diagram and see exactly where the software will make

a security decision?

 4. Does the diagram show all the trust boundaries, such as where different

accounts interact? Do you cover all UIDs, all application roles, and all

network interfaces?

 5. Does the diagram refl ect the current or planned reality of the software?

28 Part I 8 ■ Getting Started

 6. Can we see where all the data goes and who uses it?

 7. Do we see the processes that move data from one data store to another?

Threats

 1. Have we looked for each of the STRIDE threats?

 2. Have we looked at each element of the diagram?

 3. Have we looked at each data fl ow in the diagram?

N O T E Data fl ows are a type of element, but they are sometimes overlooked as people
get started, so question 3 is a belt-and-suspenders question to add redundancy. (A belt-
and-suspenders approach ensures that a gentleman’s pants stay up.)

Validating Threats

 1. Have we written down or fi led a bug for each threat?

 2. Is there a proposed/planned/implemented way to address each threat?

 3. Do we have a test case per threat?

 4. Has the software passed the test?

Summary

Any technical professional can learn to threat model. Threat modeling involves

the intersection of two models: a model of what can go wrong (threats), applied

to a model of the software you’re building or deploying, which is encoded in

a diagram. One model of threats is STRIDE: spoofi ng, tampering, repudiation,

information disclosure, denial of service, and elevation of privilege. This model

of threats has been made into the Elevation of Privilege game, which adds struc-

ture and hints to the model.

With a whiteboard diagram and a copy of Elevation of Privilege, developers

can threat model software that they’re building, systems administrators can

threat model software they’re deploying or a system they’re constructing, and

security professionals can introduce threat modeling to those with skillsets

outside of security.

It’s important to address threats, and the STRIDE threats are the inverse of

properties you want. There are mitigation strategies and techniques for devel-

opers and for systems administrators.

Once you’ve created a threat model, it’s important to check your work by

making sure you have a good model of the software in an up-to-date diagram,

and that you’ve checked each threat you’ve found.

